

Production of Methyl Isobutyl Ketone from Acetone and Hydrogen

Mr. Parth Kamani Kishorbhai, Miss Miral Bhanushali Jerambhai, Mr. Aarif Khan Aziz Ahmad Government Engineering College Valsad

Background:

Methyl Isobutyl Ketone (MIBK) can be produced by using low pressure one step gas phase process. Acetone and Hydrogen are used as a feed and nano-Pd/nano-ZnCr-O as a catalyst at about 1 atmospheric pressure. MIBK is generally used as a solvent for many industries. (1)

Process description:

Pure Acetone feed (S-01) and recycled acetone (S-26) is mixed in mixer (MIX-01). The mixed acetone feed (S-02) enters the Heat exchanger (HE -01), where it exchanges the Heat associated with the reactor effluent. The outlet stream (S-03) enters the heater (HEAT-01) for further heating and then to pressure reducing valve (VALV-01) before entering to the mixture (MIX-02) and the conversion reactor (RC-01). Simultaneously Pure hydrogen feed (S-06) and recycled hydrogen (S-21) is mixed in mixer (MIX-03). The mixed hydrogen feed (S-07) enters the heat exchanger (HE-03) and then heater (HEAT-02) for further heating and then to pressure reducing valve (VALV-02).Now, the mixed acetone feed stream (S-05) and mixed hydrogen feed (S-10) enters the mixture (MIX-02) and then the mixture (S-11) enters the Conversion reactor (RC-01). Where the conversion reaction takes place in the vapor phase with the average acetone conversion being specified as 70 %. The conversion depends upon the catalyst and various other parameters, so an average conversion of 70 % is taken. The reactor effluent contains unreacted acetone, unreacted hydrogen, MIBK and by-product as water. The reactor effluent (S-12) and (S-13) is mixed and stream (S-14) is obtained . (S-14) is recycled using (REC-01) which passes through (HE-01), (COMP-01), (HE-03), (HEAT -03). Stream(S-19) enters the compound separator (CS-01), where pure hydrogen (S-20) is obtained and recycled (REC-02) and mixed with pure hydrogen feed (S-06). The bottom product from (CS-01) i.e., stream (S-22) enters the Distillation column (DC-01) from which acetone obtained from the distillate is recycled (REC-03). The bottom product from (DC-01) enters the second distillation column (DC-02) from which mainly water (S-28) is obtained as distillate and pure MIBK is obtained as bottom product (S-29).

Flowsheet:

Figure 1:One step synthesis of MIBK

Results:

Master Property Table														
Object	S-01	S-02	S-03	S-06	S-07	S-11	S-14	S-19	S-20	S-23	S-25	S-28	S-29	
Temperature	343.15	338.912	623.15	298.15	302.761	622.709	788.354	308.15	308.15	308.15	338.994	377.066	385.544	К
Pressure	182385	141855	141855	597818	349572	121590	120590	101325	101325	101325	101325	101325	101325	Pa
Molar Flow	27.7778	60.3077	60.3077	14.0278	26.007	86.3147	72.4215	72.4215	12.1138	60.3077	35.1515	12.1562	13	mol/s
Volumetric Flow	0.00219969	0.00391242	2.20258	0.0581655	0.187268	3.67521	3.93629	0.385531	0.306291	0.00357447	0.0018625	0.000393228	0.00182738	m3/s
Molar Fraction (Mixture) / Hydrogen	0	0	0	1	1	0.301304	0.167268	0.167268	1	0	0	0	0	
Molar Fraction (Mixture) / Water	0	0.25775	0.25775	0	0	0.180089	0.406475	0.406475	0	0.488122	0.49995	0.858957	0.000682531	
Molar Fraction (Mixture) / Acetone	1	0.658207	0.658207	0	0	0.459886	0.164433	0.164433	0	0.197462	0.338613	0.00128365	2.76814E-23	
Molar Fraction (Mixture) / Methyl isobutyl ketone	0	0.0840431	0.0840431	0	0	0.0587205	0.261824	0.261824	0	0.314416	0.161437	0.139759	0.999317	

Conclusion and Recommendation:

- A flowsheet for continuous production of MIBK was built with a product purity of 99% with the open-source Simulation tool DWSIM- Version 6.4.8 Classic UI.
- Since kinetic data related to catalytic single step reaction is not available in the open-source literature, we have used a conversion reactor model in the flowsheet with average acetone conversion of 70%.
- NRTL model was used a thermodynamical model and only a 'Single-Step reaction ' with no intermediate reaction and no intermediate product takes place as follow.

 $2CH_{3}COCH_{3} + H_{2} \longrightarrow (CH_{3})_{2}CHCH_{2}COCH_{3} + H_{2}O$ Acetone Hydrogen Methyl Isobutyl Ketone Water

References:

1. Abdulrahman A. Al-Rabiah, Vagif Malik Akhmedov, Baku , Abdulaziz A. Bagabas. LOW PRESSURE ONE-STEP GAS-PHASE PROCESS FOR PRODUCTION OF METHYL ISOBUTYL KETONE. s.l. : US 2011 023783, 2011.