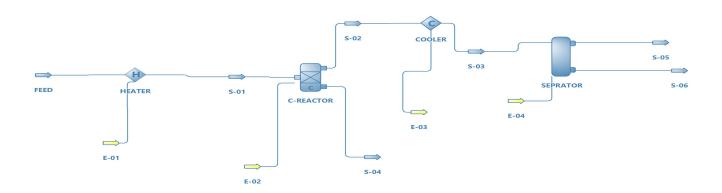


Production of Toluene by Dehydrogenation of Normal Heptane

Rounak Gupta

Department of Chemical Engineering, Birsa Institute of Technology, Sindri.

Background & Description:


Toluene is produced from n-heptane by dehydrogenation over a Cr₂O₃ catalyst, The reaction for the same is given below:

$$CH_3CH_2CH_2CH_2CH_3$$
 \longrightarrow $C_6H_5CH_3$ + $4H_2$

In this process Toluene is formed along with Hydrogen as shown in the reaction.

The process flowsheet shows the conversion of n-heptane to toluene using a catalytic reactor working on the reaction shown above. The toluene production process is started by heating n-heptane from 65 to 800°F in a heater. It is fed to a catalytic reactor, which operates isothermally and converts 15 mol percent of the n- heptane to toluene. Its effluent is cooled to 65°F and fed to a separator (flash). Assuming that all of the units operated at atmospheric pressure, The species flow rate and other properties are determined in every stream.

Flowsheet:

Master Property Table								
Object	S-06	S-05	S-04	S-03	S-02	S-01	FEED	
Temperature	18.3333	18.3333	426.667	18.3333	426.667	426.667	18.3333	С
Pressure	1.01325	1.01325	1.01325	1.01325	1.01325	1.01325	1.01325	bar
Mass Flow	3459.13	140.875	0	3600	3600	3600	3600	kg/h
Molar Flow	34.9817	22.5022	0	57.4839	57.4839	35.9274	35.9274	kmol/h
Volumetric Flow	4.87186	538.07	0	542.942	3294.47	2051.58	5.24272	m3/h
Mixture Molar Enthalpy	-37374.2	-232.34	0	-22834.9	63516.6	99373.3	-37435.2	kJ/kmol
Mixture Molar Entropy	-95.4591	0.396744	0	-57.9361	227.384	201.948	-102.485	kJ/[kmol.K]
Vapor Phase Molar Fraction	0	1	0.352309	0.391453	1	1	0	
Phases	Liquid Only	Vapor Only	Mixed	Mixed	Vapor Only	Vapor Only	Liquid Only	
Energy Flow	-363.17	-1.45227	0	-364.622	1014.22	991.73	-373.598	kW

Master Property Table									
Object	S-06	S-05							
Molar Fraction (Mixture) / Toluene	0.150629	0.00532612							
Mass Fraction (Mixture) / Toluene	0.140354	0.0783869							
Molar Flow (Mixture) / Toluene	5.26927	0.119849	kmol/h						
Mass Flow (Mixture) / Toluene	485.502	11.0427	kg/h						

PROPERTIES TABLE					
C-REACTOR	Toluene Formation: Extent		%		
C-REACTOR	N-heptane: Conversion	15	%		

Conclusion:

Toluene is formed with a conversion rate of 15%.

Reference:

1. HYSYS:An Introduction to Chemical Engineering Simulation by Mohd.Kamaruddin Abd Hamid chapter-13 page no-146