

Design and Control of Heterogeneous Azeotropic Column System for the Separation of Pyridine and Water

Anuj Desai & Bloch Sohil Sardar Vallabhbhai National Institute of Technology, Surat

Background

Heterogeneous azeotropic distillation is commonly used in industry to separate mixtures of close relative volatility and breaking azeotropes. The advantage of this separation is to utilize a natural liquid-liquid separation in a decanter.

A pyridine-water mixture has an azeotrope with a composition of around 77 mol % H2O and azeotropic temperature of 94.89 °C. By adding toluene into the system, two additional azeotropes are formed. One desirable azeotrope (toluene-water) is heterogeneous with an azeotropic temperature of 84.53 °C, which is the minimum temperature for the entire ternary system. Another azeotrope between pyridine and toluene is also formed with a higher azeotropic temperature of 110.15 °C.

Description of the flowsheet

The flowsheet contains two distillation columns named "DC-01" and "DC-02". DC-01 has 14 trays and 6th tray is the feed location for feed S-01. DC-02 has 10 trays and 6th tray is the feed location for the feed S-11. Toluene has been used as an entrainer. S-05 is toluene feed which alters the relative volatility between pyridine and water. COOL-01 act as condenser for column DC-01. Decanter is used in the reflux to separate the pyridine and water layers. The pyridine layer is sent to DC-01 while water layer gets mixed with the S-10.

Pure pyridine of 99.96% purity is obtained as DC-01 bottoms and water of 99.9 % purity is obtained as DC-02 bottoms. The top product of DC-02 is recycled and act as feed for column DC-01.

Flowsheet

Results

Object	S-13	S-11	S-03	S-02	S-01	
Temperature	99.8363	24.8878	103.344	118.098	94.7984	с
Pressure	1.01325	1.01325	1.11458	1.11458	1.01325	bar
Mass Flow	16283.3	31414.2	37284.2	7844.05	15130.9	kg/h
Molar Flow	900.809	1391.21	761.076	99.1998	490.399	kmol/h
Volumetric Flow	16.9923	31.5705	21374	8.97265	14805.7	m3/h
Molar Fraction (Mixture) / Toluene	5.13222E-19	5.0615E-05	0.0749771	3.55914E-06	0.000143589	
Molar Fraction (Mixture) / Water	0.999	0.925274	0.508946	0.000437064	0.789848	
Molar Fraction (Mixture) / Pyridine	0.001	0.0746751	0.416077	0.999559	0.210008	

Reference: https://pubs.acs.org/doi/abs/10.1021/ie901231s