Production of ETBE using C4-stream and Ethanol

Kedar Joshi

Chemical engineering Department

VVP ENGINEERING COLLEGE, RAJKOT - 360005

Email : <u>kedarhitenj@gmail.coom</u>

BACKGROUND

Due to restriction of leaded gasoline, MTBE (Methyl Tert Butyl Ether) used to increase octane number of gasoline. Presence of MTBE in ground-water has proved its adverse effect on ecology and environment. In these conditions ETBE (Ethyl Tert Butyl Ether) is much better alternative as gasoline additive.

FLOWSHEET DISCRIPTION

In this process Ethanol(95%) and C4 stream is used to produce ETBE. After making reactant mixture according to raction condition, mixture is fed to plug flow reactor to have liquid phase Reaction. Conversion if PFR is 82 % with respect to Isobutene.

CH ₃ CHOH	+	$CH_2C(CH_3)_2$	 (CH ₃) ₃ COCH ₂ CH ₃
Ethanol		Isobutene	ETBE

Product mixture is separated by Distillation with high pressure. As product we are getting 96.5 % pure ETBE form bottom of distillate. In unreacted components, C4s can be separated by gas-liquid separator to have C4s in vapor phase and other unreacted as in liquid phase.

RESULTS

Result of flowsheet is as follows.

Object		Ethanol + Water	C4	2	4	Reactant Mixture	Product PFR -019	Distillation Column Feed	ETBE (Bottom Product)	DC Top Product	Unreated C4	Unreacteds
Temperature (K)		298.15	298.15	350	344	337.733	337.733	393	465.849	369.713	377.013	377.013
Pressure (Pa)		101325	202650	1.00E+06	1.01E+06	1.00E+06	788131	788131	1.62E+06	1.40E+06	1.40E+06	1.40E+06
Mass Flow (kg/s)		2.44768	7.82484	2.44768	7.82484	10.2725	10.2725	10.2725	3.91014	6.36211	5.08504	1.27706
Molar Flow (mol/s)		54.8	139	54.8	139	193.8	152.723	152.723	39	113.723	91.2361	22.4869
Volumetric Flow (m3/s)		0.00330928	1.60991	0.00352776	0.0145088	0.016946	0.0159671	0.549431	0.0074967	0.0122475	0.15818	0.00236969
Mixture Dens	sity (kg/m3)	739.643	4.86041	693.835	539.318	606.192	643.357	18.6966	5.22E+02	519.463	32.1473	538.916
Mixture Molar Weight (kg/kmol)		44.6658	56.2938	44.6658	56.2938	53.0058	67.2625	67.2625	100.26	55.9439	55.735	56.7914
Vapor Phase	Molar Fraction	0	1	0	0	0	0	1	0.000632368	0	1	0
Molar	Isobutene	0	0.36	0	0.36	0.258204	0.0586877	0.0586877	2.72E-05	0.078809	0.0826721	0.0631351
Fraction	Ethanol	0.95	0	0.95	0	0.268627	0.0719142	0.0719142	0.0337194	0.0850156	0.0628442	0.174972
(Mixture)	Tert-butyl ethyl ether	0	0	0	0	0	0.268964	0.268964	0.965805	0.0299391	0.0198369	0.0709264

REFERENCE

Introduction to Process Engineering and Design by S B Thakore and B I Bhatt, Tata McGraw Hill, 2nd Edition,2007.

Carles Fite; Montserrat Iborra; Javier Tejero; Jose F. Izquierdo and Fidel Cunill, "Kinetics of the Liquid-Phase Synthesis of Ethyl Tert-Butyl Ether (Etbe)," *Industrial & Engineering Chemistry Research*, vol.33, 1994, pp. 581-591.

https://www.wikiwand.com/en/Ethyl tert-butyl ether

https://www.wikiwand.com/en/Isobutylene

https://www.wikiwand.com/en/Ethanol