ABSTRACT FOR STOICHIOMETRIC REACTOR

Description:

Stoichiometric reactor is used to get the composition of product stream given:

- Feed stream composition
- Coefficients of components involved in reaction
- Reaction Coordinate of each reaction

The important equations involved are:
$\mathrm{F}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i} 0}-\left(\mathrm{v}_{\mathrm{i}} / \mathrm{v}_{\mathrm{A}}\right) \mathrm{X}_{\mathrm{A}} \mathrm{F}_{\mathrm{A} 0}$
$X_{A}=$ Amount of limiting reagent converted/Amount of limiting reagent present in mixture just before reaction
Where, F_{i} is the molar flow rate of $\mathrm{i}^{\text {th }}$ component in product stream
$F_{i 0}$ is the molar flow rate of $\mathrm{i}^{\text {th }}$ component in feed stream
v_{i} is the stoichiometry of $i^{\text {it }}$ component in reaction
V_{A} is the stoichiometry of limiting reagent in reaction
$F_{A 0}$ is the molar flow rate of limiting reagent in feed stream
Product compositions of reactions are calculated using sequential method and not simultaneously i.e. the code solves for the product composition after first reaction, and then uses this updated composition to find the product composition of next reaction.
Limiting Reagent is found by calculating the molar composition/stoichiometry ratio for reactants of a particular reaction. The reagent with least ratio is the limiting reagent.

References: http://www.iitg.ac.in/tamalb/documents/reactors.pdf

Examples:

1)Component System: $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CO}, \mathrm{CH}_{4}, \mathrm{O}_{2}, \mathrm{CO}_{2}$

Thermodynamic Package: Peng Robinson/Lee Kesler
Reaction: $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CO}+\mathrm{CH}_{4}$ (Fractional conversion $=0.3$)
$1 / 2 \mathrm{O}_{2}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}$ (Fractional conversion $=0.7$)
Feed Composition: 0.5 moles O_{2} and 0.5 moles $\mathrm{CH}_{3} \mathrm{CHO}$

Component	Method of Solving for number of moles	
	Analytical	DWSIM
$\mathrm{CH}_{3} \mathrm{CHO}$	0.35	0.34976363
CO	0.045	0.04496961
CH_{4}	0.15	0.1498987
O_{2}	0.4475	0.44719779
CO_{2}	0.105	0.10492909

2)Component System: $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CO}, \mathrm{CH}_{4}, \mathrm{O}_{2}, \mathrm{CO}_{2}$ Thermodynamic Package: Soave-Redlich-Kwong (SRK)
Reaction: $\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CO}+\mathrm{CH}_{4}$ (Fractional conversion $=0.3$)
$1 / 2 \mathrm{O}_{2}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}$ (Fractional conversion $=0.7$)

Feed Composition: 0.1 moles O_{2} and 0.9 moles $\mathrm{CH}_{3} \mathrm{CHO}$

Component	Method of Solving for number of moles	
	Analytical	DWSIM
$\mathrm{CH}_{3} \mathrm{CHO}$	0.63	0.62930623
CO	0.13	0.12985684
CH_{4}	0.27	0.26970267
O_{2}	0.03	0.029966964
CO_{2}	0.14	0.13984583

3) Component System: $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$

Thermodynamic Package: Soave-Redlich-Kwong (SRK)
Reaction: $\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}($ Fractional conversion $=0.5)$
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}_{2}($ Fractional conversion $=0.7)$
$\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}($ Fractional conversion $=0.8)$
Feed Composition: 0.6 moles $\mathrm{C}_{2} \mathrm{H}_{6}, 0.5$ moles H_{2} and 0.9 moles $\mathrm{C}_{2} \mathrm{H}_{4}$

Component	Method of Solving for number of moles	
	Analytical	DWSIM
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.09	0.0898025
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.24	0.23947333
$\mathrm{C}_{2} \mathrm{H}_{2}$	1.17	1.1674325
H_{2}	1.22	2.1752161

4) Component System: $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$

Thermodynamic Package: UNIFAC
Reaction: $\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}($ Fractional conversion $=0.3)$
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{H}_{2}($ Fractional conversion $=0.2)$
$\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2}($ Fractional conversion $=0.6)$
Feed Composition: 0.4 moles $\mathrm{C}_{2} \mathrm{H}_{6}, 0.9$ moles H_{2} and 0.1 moles $\mathrm{C}_{2} \mathrm{H}_{4}$

Component	Method of Solving for number of moles	
	Analytical	DWSIM
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.224	0.22336457
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.088	0.087750366
$\mathrm{C}_{2} \mathrm{H}_{2}$	0.188	0.18746669
H_{2}	1.254	1.2604143

