ABSTRACT FOR CYCLONE

Description:

This abstract is for the code written for Cyclone. Function of this program is to evaluate the amount of dirt separated by cyclones and also finding efficiency of cyclone for specified ranges of particle diameter, given the dimension of cyclone.

Assumption:

1) Only one component is specified as dirt particle

The number of revolutions gas particle make inside cyclone can be approximated by the formula:

$$
N=\frac{1}{H}\left(L_{b}+\frac{L_{c}}{2}\right)
$$

where, N is the number of revolutions,
L_{b} is the length of cyclone body in m,
H is the height of inlet duct in m
L_{c} is the length of cyclone cone in m
The feed velocity is calculated as:
$V_{i}=\frac{Q}{W H}$
where V_{i} is the feed velocity inside duct with which it enters cyclone in m / s
Q is the volumetric flow in $\mathrm{m}^{3} / \mathrm{s}$
W is the width of inlet duct in m
H is height of duct in m
The diameter of particle with 50% efficiency is calculated by formula:

$$
d_{p c}=\sqrt{\frac{9}{2 \pi} \frac{\mu W}{N V_{i}\left(\rho_{p}-\rho_{a}\right)}}
$$

where, $d_{p c}$ is diameter of particles collected with 50% efficiency
μ is the viscosity of feed fluid in Pa.s
ρ_{p} is particle density in $\mathrm{Kg} / \mathrm{m}^{3}$
ρ_{a} is fluid density in $\mathrm{Kg} / \mathrm{m}^{3}$
Efficiency for particle with diameter d_{pj} is calculated using:
$\eta_{j}=\frac{1}{1+\left(d_{p c} / d_{p j}\right)^{2}}$
where, η_{j} is the efficiency of removal of particle with diameter $d_{p j}$
Overall efficiency is then, calculated by weighing of efficiency with mass distribution of particles as:
$\eta=\frac{\sum \eta_{j} m_{j}}{M}$
where m_{j} is the mass of particle of diameter $d_{p j}$ in Kg
M is the total mass of particles in Kg
Reference: $\underline{\text { http://www.dartmouth.edu/~cushman/courses/engs37/Cyclones.pdf }}$

Examples:

Q1)
(The example question given in slide 10 of reference) The cyclone is of conventional type with standard proportions. Diameter $=1 \mathrm{~m}$. Flowrate $=\mathrm{Q}=150 \mathrm{~m}^{3} / \mathrm{min}$. Particle denisty $=1600 \mathrm{Kg} / \mathrm{m}^{3}$. Particle distribution is as follows:

Particle size	$\%$ mass in th
$\left(d_{p}\right)$	$(\mathrm{m} / \mathrm{M})$
$0-2 \mu \mathrm{~m}$	1.0%
$2-4 \mu \mathrm{~m}$	9.0%
$4-6 \mu \mathrm{~m}$	10.0%
$6-10 \mu \mathrm{~m}$	30.0%
$10-18 \mu \mathrm{~m}$	30.0%
$18-30 \mu \mathrm{~m}$	14.0%
$30-50 \mu \mathrm{~m}$	5.0%
$50-100 \mu \mathrm{~m}$	1.0%
	100%

Calculate the collection efficiency
A1) The efficiency given in answer is tabulated below:

Size range (in $\mu \mathrm{m}$)	Average size d_{p} (in $\mu \mathrm{m}$)	Collection efficiency η	Mass fraction m / M	Contribution to performance $\eta \times m / M$
$0-2$	1	2.9%	0.01	0.029%
$2-4$	3	21.1%	0.09	1.903%
$4-6$	5	42.7%	0.10	4.268%
$6-10$	8	65.6%	0.30	19.678%
$10-18$	14	85.4%	0.30	25.613%
$18-30$	24	94.5%	0.14	11.953%
$30-50$	40	97.9%	0.05	4.897%
$50-100$	75	99.4%	0.01	0.994%

The efficiency calculated in custom model is given below:

Diameter Range in $(\mu \mathrm{m})$	Collection efficiency in $\%$
$0-2$	2.9
$2-4$	21
$4-6$	42.5
$6-10$	65.5
$10-18$	85.3

$18-30$	94.5
$30-50$	97.9
$50-100$	99.4

The total efficiency is calculated to be 70.5% which is in accordance with the given result.

