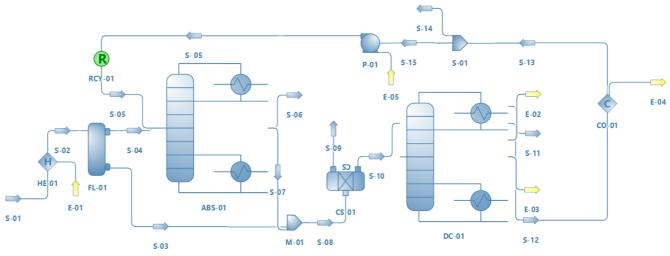


MonoChlorobenzene Separation Process

Ana Paula Ribeiro Paiva


Department of Chemical and Petroleum Engineering, Universidade Federal Fluminense, 24210-240, Niterói, RJ, Brazil

Background & Description:

MonoChlorobenzene is an important intermediate in the production of waxes, rubbers, and, pharmaceutical products, among others. Its production occurs mostly from the chlorination of benzene, which produces a stream of benzene (BEN), monochlorobenzene (MCB) and chloridric acid (HCl). A secondary plant to separate these components was simulated and presented in the "Flowsheet" section, based on data from Seider *et al.* [1]. Wilson's Fluid Package was used to describe the equilibrium and thermodynamic relationships. According to Seider, this stream consists of 10% HCl, 40% BEN and 50% MCB, with a flow rate of 100 lbmol/hr, 80 °F and 37 psia. At the end of the process, the overhead outlet stream from the distillation column must have a MCB flow rate of 0.1 lbmol/hr and the bottom outlet stream must have a MCB mole fraction equals to 1.0.

The initial stream (S-01), after being heated, passes through a flash vessel. Then, the flash's top stream is sent to an absorber column with 3 theoretical stages and 32 psia. The absorber column and the flash vessel bottom products are mixed and treated for total HCl removal. The S-10 stream components (MCB and BEN) can be separated by a distillation column with 20 theoretical stages and a pressure of 25 psia. The bottom stream from DC-01, constituted mostly of MCB, is divided and part of it is pressurized and recycled to the absorber column.

Flowsheet:

MonoChloroBenzene Separation Process Flowsheet

Cooling

water

Cooling

water

Results:

Stream	S-01	S-05	S-06	S-10	S-11	S-12	S-14
Temperature [F]	80	120	137	256	209	307	120
Pressure [psia]	37	32	32	32	25	25	25
Molar Flow [lbmol/hr]	100	99.2	9.81	188.9	40.1	148.8	49.5
Molar Composition							
HCl	0.10	0.00	0.96	0.00	0.00	0.00	0.00
BEN	0.40	0.00	0.00	0.21	0.99	0.00	0.00
MCB	0.50	1.00	0.04	0.79	0.01	1.00	1.00
	Tal	ole 1. Ma	ain Streams	s Results			
Object	E-01		E-03	E-05	E-02		E-04
Energy Flow [kW]	342	2.5	1112.3	0.084	1036.9		334.5

*medium pressure steam

Utility Source

Table 2. Energy Results

Steam

(mps)*

Electrical

Steam

(mps)*

Conclusion & Recommendations:

The simulated MCB separation process on DWSIM software (v6.7.1) presented results similar to the reference [1]. It can be observed that S-11 and S-14 streams have purities of 99% of BEN and MCB, respectively.

This process presents a total energy consumption (electrical and steam) of 1454.9 kW and requires the removal of 1371.4 kW (cooling water) from the condensers.

It can be seen that the bottom stream (S-12) from the distillation column has a high temperature (306 $^{\circ}$ F), which requires its cooling by the condenser (CO-01). As the initial stream (S-01) must be heated, it is possible to do a heat integration, taking advantage of the S-12 temperature. That is an improvement possibility on the process to be studied in the future.

References:

[1] Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R, Ming Ng, K., (2016), *Product and Process Design Principles: Synthesis, Analysis and Evaluation*, 4° ed., John Wiley & Sons, West Sessex.