

Linde Liquified Natural Gas Production Process

Anish Jha

Department of Chemical Engineering, Birsa Institute of Technology, Sindri

Background & Description:

The Linde cycle is a process of liquefaction of gases by, regenerative cooling, which is a positive feedback cooling system. Natural gas is required to be liquified for its transportation and its use as a liquid fuel in aircrafts.

This process flowsheet depicts the production of liquified natural gas(LNG) using Hampson-Linde cycle.

Natural gas (methane) enters the process at 77^{0} F and 20 psia pressure. Then the gas is compressed in a compressor of 75% adiabatic efficiency to 3000 psia which is then cooled to 90^{0} F by a cooler. The natural gas is the sent to a counter current flow heat exchanger of 10 m² area for further cooling using the cooled vapors of liquified natural gas. After cooling the gas is passed through a throttle valve with outlet pressure of 20 psia. Then the liquified natural gas is obtained using a vapor liquid separator. The vapor stream of natural gas is recycled through the heat exchanger to the mixer along with the methane entering.

The obtained Liquified Natural Gas is at -251.793⁰F and 20 psi.

Flowsheet:

Results:

Table 1: entry and exit material stream

Master Property Table							
Object	methane vapour	liquified methane	inlet	Methane			
Temperature	-251.793	-251.793	-203.209	77	F		
Pressure	20	20	20	20	psi		
Mass Flow	1.22044E+08	8.11878E+06	1.30163E+08	7.27674E+06	kg/h		
Molar Flow	1.67719E+07	1.11572E+06	1.78876E+07	1E+06	lbmol/h		

Master Property Table				
Object	HE-01			
Heat Exchange Area (A)	10	m2		
Cold fluid outlet temperature	-220	F		
Hot fluid outlet temperature	71.9821	F		
Logarithmic mean temperature difference LMTD	176.021	C.		
Thermal Efficiency	9.23959	%		
Maximum Theoretical Heat Exchange	1.37965E+07	kW		

Master Property Table				
Object	Compressor			
Pressure Increase	205.463	bar		
Adiabatic Efficiency	75	%		
Power Required	3.46166E+07	kW		

Master Property Table					
Object	Cooler-02	Cooler-01			
Outlet Temperature	-35	90	F		

Table 2: Properties of heat exchanger, compressor and coolers used

Reference: <u>https://www.chegg.com/homework-help/questions-and-answers/natural-gas-methane-liquefaction-process-linde-liquified-natural-gas-lng-production-proces-q23871193</u>