

Rankine Power Plant Cycle Utilizing Ammonia with Surface and Deep-Water Heat Exchange.

Bellisima D. Chatumba, Emmanuel Mtatiro. Department Chemical Engineering, Marwadi University, Rajkot, Gujarat.

Abstract:

This simulation is of a Rankine cycle which is a thermodynamic process that uses the temperature difference of water between the surface and depth of a water body to generate power. There are four ammonia streams in the cycle, which are referred to as Streams 1, 2, 3, and 4. Stream 1 is the input stream that enters the turbine and produces energy, or work. Stream 2 flows into the heat exchanger and is cooled. Stream 3 is the ammonia stream that exits the heat exchanger and flows into the pump, where its pressure is increased. Stream 4 reaches the second heat exchanger and receives heat. This heat exchanger generates Stream 1A, which is recycled back. Surface and deep-water are the primary heat and coolants for ammonia.

Thermodynamic package: Peng-Robinson.

Flow sheet:

Results:

Properties	Unit	Stream					
		4	3	2	1A	1	
Temperature	°C	10.077	9.99996	9.99996	20	20	
Pressure	atm	8.43441	6.05127	6.05127	8.43441	8.43441	
Mass Flow	g/s	1000	1000	1000	1000	1000	
Molar Fraction							
(Vapor)	frac	0.0000	0.0000	0.9847	1.0000	1.0000	

		Stream						
Properties	Unit	Surface water	Surface water	Depth water	Depth			
		out	in	out	water in			
Temperature	°C	23.4342	25	7.04328	5			
Pressure	atm	1	1	1	1			
Mass Flow	g/s	180771	180771	35356.4	35356.4			
Molar Fraction								
(Vapor)	frac	0.0000	0.0000	0.1901	0.1724			

Reference: Claus Borgnakke Richard E. Sonntag (1998) Fundamentals of Thermodynamics (7th ed.) John Wiley & Sons.